skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pankratov, Denis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We develop a new semi-algebraic proof system called Stabbing Planes which formalizes modern branch-and-cut algorithms for integer programming and is in the style of DPLL-based modern SAT solvers. As with DPLL there is only a single rule: the current polytope can be subdivided by branching on an inequality and its “integer negation.” That is, we can (non-deterministically choose) a hyperplane ax ≥ b with integer coefficients, which partitions the polytope into three pieces: the points in the polytope satisfying ax ≥ b, the points satisfying ax ≤ b, and the middle slab b − 1 < ax < b. Since the middle slab contains no integer points it can be safely discarded, and the algorithm proceeds recursively on the other two branches. Each path terminates when the current polytope is empty, which is polynomial-time checkable. Among our results, we show that Stabbing Planes can efficiently simulate the Cutting Planes proof system, and is equivalent to a tree-like variant of the R(CP) system of Krajicek [54]. As well, we show that it possesses short proofs of the canonical family of systems of F_2-linear equations known as the Tseitin formulas. Finally, we prove linear lower bounds on the rank of Stabbing Planes refutations by adapting lower bounds in communication complexity and use these bounds in order to show that Stabbing Planes proofs cannot be balanced. 
    more » « less